
The Advanced Toolbar Control (ATC) from Alien
Technologies
A breakthrough library that adds advanced toolbar features to an application in less than a
day.

Version 1.5

ATC is designed to assist programmers in supporting the advanced toolbar features
appearing in today's best-selling Windows applications. The ATC programming interface is
extremely easy to use and designed to easily integrate into an application framework in less
than a day.
The 16-bit ATC package consists of Dynamic Link Libraries (DLL's), libraries, and header
files necessary to create Windows 3.1 applications using Microsoft and Borland compilers.
The 16/32-bit ATC package adds DLL's necessary to create Windows NT and Win32s
applications.
The 16/32-bit Source ATC package adds the complete source code to the ATC libraries.

New Features!
Using ATC
User Features
Programmer Features
Ordering Information
Licensing Agreement
About Alien Technologies

© 1994 Alien Technologies. All rights reserved.
Advanced Toolbar Control is a trademark of Alien Technologies.
Microsoft, MS, and MS-DOS are registered trademarks and Visual C++, Windows, Windows NT, Win32s, and Win32
are trademarks of Microsoft Corporation.
Borland is a registered trademark of Borland International, Inc.

Using ATC
The included 16-bit ATC libraries allow you to build 16-bit Windows 3.1 applications. If the
32-bit libraries were puchased then you can also create 32-bit Windows NT or Win32s
(running under Windows 3.1) applications.
16-bit applications
The 16-bit ATC libraries are compatible with Borland and Microsoft compilers for creating
Windows 3.1 applications. The ATC library is mixed-model compatible which means you
application can be compiled use the small, medium, or large memory model.
The following is the list of files that are involved with a 16-bit ATC application:

atc.h This header file should be included by all program source code
modules that call ATC functions. This is compatible with 16- and 32-bit
applications. This file can be found in the installed ATC\INCLUDE
directory.

atc16.dll Run-time library for 16-bit applications. This file must be available to
the application by placing the file in the same directory as the
executable or in the Windows directory. This file can be found in the
installed ATC\REDIST directory.

atc16.lib Import library for use with Microsoft or Borland compilers when used to
create 16-bit applications. Link this in with your project. This file can be
found in the installed ATC\LIB directory.

32-bit applications
The 32-bit ATC libraries are compatible with Borland and Microsoft compilers for creating
Windows NT or Win32s applications.
The following is the list of files that are involved with a 32-bit ATC application:

atc.h This header file should be included by all program source code
modules that call ATC functions. This is compatible with 16- and 32-bit
applications. This file can be found in the installed ATC\INCLUDE
directory.

atc32.dll Run-time library for 32-bit applications. This file must be available to
the application by placing the file in the same directory as the
executable or in the Windows (for Win32s) or Windows NT directory.
This file can be found in the installed ATC\REDIST directory.

atc32ms.lib Import library for use with Microsoft Visual C++ for Windows NT when
used to create 32-bit applications. Link this in with your project. This
file can be found in the installed ATC\LIB directory.

atc32bc.lib Import library for use with Borland C++ 4.0 when used to create 32-bit
applications. Link this in with your project. This file can be found in the
installed ATC\LIB directory.

Note that the .LIB files are not compatible between Borland and Microsoft compilers.
However, the .DLL files can be used with an application generated with either compiler.

New Features
ATC continues to deliver high-quality, innovative features for users and developers!

The following features are new to version 1.5:
- Independent toolbar systems can exist on multiple windows with their own private

buttons, toolbars, and dock.
- Text can be automatically drawn on the toolbar buttons providing additional help for

the user. The user can control the display of button text at run-time and the buttons,
toolbar, and dock will automatically shrink or expand to accommodate the text.

- Buttons can be classified into categories for the Insert Item dialog box. The user can
choose which category of buttons should be displayed to assist in tracking down a
particular button.

- Button images are no longer forced to exist along one row in the bitmap resource.
The bitmap can contain multiple rows of button images allowing an almost unlimited
number of buttons!

- ATC now correctly works as a server for multiple simultaneous applications or
multiple instances of the same application.

- An MFC wrapper class has been created for ATC. Now ATC and MFC can work together
in the same application!

User Features
ATC supports the latest and most advanced toolbar features appearing in today's best-
selling Windows applications.

The following features are available to the application user:
Toolbar Dock
Popup Toolbar Menu
User Configurable
Quick Help
Button Text
Floating Toolbar Windows

Toolbar Dock
The dock's purpose is to contain multiple toolbars in a static window at the top of the
screen. The toolbars within the dock can be rearranged by the user by clicking and
dragging the toolbars around with the left mouse button.
The dock will automatically expand down the window as more toolbars are added. The
toolbars are wrapped based on the maximum width of the application window.

Popup Toolbar Menu
Pressing and releasing the right mouse button on the toolbar or dock will cause a toolbar
popup menu to appear. This menu allows the user to make a toolbar visible or invisible or
insert items into a toolbar.

When the mouse is clicked on a user-created toolbar a new item appears on the bottom of
the menu allowing the user to delete the toolbar.

User Configurable
An ATC toolbar is highly configurable by the user. New toolbar items and separators can be
inserted and removed from the toolbar. Existing items can be completely rearranged on the
same toolbar or between multiple toolbars. User-created toolbars can also exist allowing
the user to create and delete entire toolbars to suit their needs.

The toolbar buttons can be rearranged by the user during run-time via a drag and drop
interface. The drag and drop interface is active at all times. Simply use the right mouse
button to click and drag a toolbar item to move it to its new location.
Dragging an item just a small amount will insert or remove separators between items.
Dragging an item off the toolbar will remove the item.
Dragging an item off a toolbar and onto another toolbar will remove it from the first toolbar
and insert it into the other. You can perform a copy instead of a move by hold the Control
key down when you first click on an item to beging the drag process.
To insert an item click the right mouse button down and release it anywhere on the toolbar
or dock to bring up the popup toolbar menu. Choose the Insert Item menu item to bring up
the following dialog box.

From here you can click on an item from the listbox and see information about that item
displayed in the assigned box. Items can be broken up into categories allowing the user the
quickly find a particular button. The category can be changed in the combo box located
above the listbox. Dragging an item with the left or right mouse button and releasing it on a
toolbar will insert the item.

Clicking on the New button will allow you to create a new, user toolbar.

After entering a toolbar title and pressing return, the empty new toolbar will appear
allowing you to easily drag and drop items to that window. The new window can be deleted
by choosing the Delete Toolbar menu item that appears on the popup toolbar menu when
you click with the right mouse button on that toolbar.

Quick Help
Quick Help provides an immediate description of a toolbar item for the user. Resting the
mouse cursor over a toolbar item for a short amount of time will cause a small help window
to appear. This window disappears as soon as the mouse is moved or the buttons are
pressed.

Button Text
Button text can be drawn directly on the toolbar buttons to further aid the user in
determining the purpose of a button. One or two words can easily fit under the button
image and the button outline itself will expand or contract. The user can control the display
of button text at run-time and the buttons sizes will change automatically.

Floating Toolbar Windows
Using the left mouse button, drag the toolbar off its dock and move it elsewhere on the
screen. The toolbar will turn into a resizeable floating window and the dock window will
readjust its shape.

To return the toolbar back to the dock window simply drag it to the dock and release. The
docked version of the toolbar will be inserted at the drop location on the dock.
The user can also double-click on a toolbar to have it immediate jump between its docked
and floating state. Clicking once on the standard close box in the top/left corner of the
floating window will hide the window. Use the popup toolbar menu to make the window
visible again.

Programmer Features
A quick tour of the API provided by ATC for the application programmer.

The following topics describe how easy and powerful ATC is for the application developer.
Initializing
Global Settings
Installing Systems
Defining Buttons
Defining Categories
Defining Docks
Defining Toolbars
Button Styles
Button States
Toolbar Settings

Status Bar Messages
Application Sizing
Layout Saving
Layout Restoration
"Toolbars" Menu

MFC Support
Object-Oriented Design
Robust Source

Initializing
An instance of the ATC DLL is initialized and terminated with the ATC_Initialize and
ATC_Terminate functions. An instance should be started by multiple instances of an the
same application or by different applications.
When initializing ATC you need to define the instance handle that ATC should use to
retrieve bitmaps and a function callback that ATC requires to obtain strings.
A commercial quality application may separate resources common to all foreign languages
from those specific to a particular language. For example, the button bitmap may reside in
a common resources DLL but strings may reside in a special DLL which contains all
language-dependent strings.
The callback function is needed to supply ATC with the following strings:
- If user-configurability will be supported then description strings based on an item's

command ID must be supplied. These are used in the Insert Item dialog box.
- If Quick Help will be supported then Quick Help strings based on an item's command ID

must be supplied.
- If Button Text will be supported then Button Text strings based on an item's command ID

must be supplied.
- If item categories will be supported then strings for category headings must be supplied.

See the demo application source code installed with ATC and the Sample Code that follows
for more information.

Sample Code

static ATCLOADSTRING glpfnATCLoadString;// The ATC load string function

// Make the callback function exportable with MakeProcInstance
glpfnATCLoadString = (ATCLOADSTRING)MakeProcInstance (
 (FARPROC)ATCLoadStringProc, ghInstance);

// Initialize ATC
ATC_Initialize (ghInstance, (ATCLOADSTRING)glpfnATCLoadString);

// This is the load string function for ATC when it needs to get a
// quick help or description string.
int ATC_FUNCTION // Length of the string
ATCLoadStringProc(
 UINT uiCmdID, // The item command ID
 ATC_WANT_STRING eWantString, // The type of string ATC wants
 char FAR *szBuffer, // The given buffer to fill
 int iSize) // The size of the given buffer
{
 // ATC wants a quick help string

 if (eWantString == ATC_HELP_STRING)
 return (LoadString (ghInstance, OFFSET_HELP_IDS + uiCmdID,
 szBuffer, iSize));

 // ATC wants a description string for the Insert Item dialog
 else if (eWantString == ATC_DESC_STRING)
 return (LoadString (ghInstance, uiCmdID, szBuffer, iSize));

 // ATC wants a text string to draw on the button
 else if (eWantString == ATC_TEXT_STRING)
 return (LoadString (ghInstance, OFFSET_TEXT_IDS + uiCmdID,
 szBuffer, iSize));

 // ATC wants a string to display the different item categories
 else if (eWantString == ATC_CATEGORY_STRING)
 return (LoadString (ghInstance, uiCmdID, szBuffer, iSize));

 // If I don't handle the string type then just return 0
 else
 return (0);
}

Global Settings
The ATC system can be configured with the following global, system-independent options:

- Drag and drop configuration of toolbar items can be enabled or disabled.
- The display of Quick Help can be enabled or disabled.
- The display of Button Text can be enabled or disabled.

Sample Code

// Turn off quick help
ATC_ShowQuickHelp (FALSE);

// Turn off drag and drop configuration of toolbar buttons
ATC_SetUserConfig (FALSE);

// Turn off button text
ATC_ShowButtonText (FALSE);

// Is quick help on?
if (ATC_IsQuickHelpOn ()) ...

// Is the user able to configure the toolbar items?
if (ATC_UserConfigOn ()) ...

// Is button text on?
if (ATC_IsButtonTextOn ()) ...

Installing Systems
A system should be installed and removed with the ATC_InstallSystem and
ATC_RemoveSystem functions. Systems are used to install buttons, toolbars, and a dock for
a particular window.
Once ATC is initialized toolbar systems can be installed for a given application window. This
window will receive the WM_SIZE and WM_COMMAND messages sent by ATC.
Systems were created so that multiple application windows can independently control their
own private buttons and toolbars. Each window will have its own dock which accepts only
toolbar and buttons designed for its system.
The system variable should be stored in either a global or perhaps in the window's extra
bytes. This variable is used when requesting or setting options for the system's dock,
toolbars and items. See the source code for the demonstration application to see how this
is done.

Sample Code

ATCSYSTEM pATCSystem; // The ATC system

// Install a toolbar system for this window
if ((pATCSystem = ATC_InstallSystem (hWnd)) == NULL)
 return (NULL);

// Remove a toolbar system
ATC_RemoveSystem (pATCSystem);

Defining Buttons
First a bitmap must be defined for all the button images. This bitmap contains all the "up"
or "normal" images for all the buttons. For example the following image bitmap was used
for the sample program:

Each image is the standard 16 pixels wide by 15 pixels tall. After adding the appropriate
shading this will create a standard 24x22 pixel button as specified by The Windows
Interface: An Application Design Guide published by Microsoft Press. This default button
size can be changed.
The images can continue for several rows allowing an almost unlimited number of buttons.
The ordering of images is defined as increasing from left to right, wrapping to the next row,
and continuing through all the images.
ATC will automatically modify the given image to indicate the following button states:

up
down
checked
indeterminate
disabled

Finally, a command ID is assigned for each button in the same order as the images in the
bitmap.

Sample Code

// Define the command ID, quick help ID, and description ID arrays
UINT uiCmdIDArray[] = {ID_FILE_NEW, ID_FILE_OPEN, ID_FILE_SAVE,
 ID_EDIT_CUT, ID_EDIT_COPY, ID_EDIT_PASTE,
 ID_FILE_PRINT, ID_APP_ABOUT};

// The bitmap "Toolbar" contains all the toolbar images
ATC_DefineButtonBitmap (pATCSystem, "Toolbar");

// Then assign buttons and strings to the toolbar images
// Use the same order as bitmap images
ATC_DefineButtons (pATCSystem, uiCmdIDArray,
 sizeof (uiCmdIDArray) / sizeof (UINT));

Defining Categories
Categories may be used to separate buttons into groups for the Insert Item dialog box. This
feature is easy to implement for the programmer and extremely useful for the user since
the search for a particular toolbar item can be accomplished in much less time.
Note that categories are optional. If none are specified then the Categories combo box in
Insert Item dialog has one entry which reads "All Items."
A categories heading array is passed to ATC and is used, as given, as the list for the Insert
Item category combo box. The array is filled with the string ID's of the actual category
headings such as "File" and "Edit".
The items within the categories is then passed to ATC as an array of all command ID's
which make up a given category.

Sample Code

// Category headings and categories
UINT uiHeadingsIDArray[] = {ID_FILE, ID_EDIT, ID_MISC};
UINT uiCatFileIDArray[] = {ID_FILE_NEW, ID_FILE_OPEN,
 ID_FILE_SAVE, ID_FILE_PRINT};
UINT uiCatEditIDArray[] = {ID_EDIT_UNDO, ID_EDIT_CUT,
 ID_EDIT_COPY, ID_EDIT_PASTE};
UINT uiCatMiscIDArray[] = {ID_APP_ABOUT};

// Define the category order
if (!ATC_DefineCategoryOrder (pATCSystem, uiHeadingsIDArray,
 sizeof (uiHeadingsIDArray) / sizeof (UINT)))
 return (NULL);

// Define the categories
if (!ATC_DefineCategory (pATCSystem, ID_FILE, uiCatFileIDArray,
 sizeof (uiCatFileIDArray) / sizeof (UINT)) ||
 !ATC_DefineCategory (pATCSystem, ID_EDIT, uiCatEditIDArray,
 sizeof (uiCatEditIDArray) / sizeof (UINT)) ||
 !ATC_DefineCategory (pATCSystem, ID_MISC, uiCatMiscIDArray,
 sizeof (uiCatMiscIDArray) / sizeof (UINT)))
 return (NULL);

Defining Docks
Currently ATC only supports a top dock. To define this dock an ATC function is used and the
handle to the dock window is returned. This window handle should be used when sizing
child windows within the application parent window.
When the toolbars are added or removed from the dock window the application window is
sent size message (WM_SIZE) to update the display.
Note that form Microsoft Foundation Class (MFC) applications you must create the dock
using a special wrapper around ATC_CreateDock. See the MFC example code for more
information.

Sample Code

// Create a dock window
hWndDock = ATC_CreateDock (pATCSystem, hWnd, ATC_DOCK_TOP);

Defining Toolbars
Toolbars are defined by using a single ATC function and passing in the command IDs of all
buttons to be installed on the toolbar. The identifier ID_ATC_SEPARATOR (defined as 0)
should be used to add a separator between toolbar items.
Toolbar windows can also have special attributes such as:

- ATC_NO_SWITCH. Forces the toolbar to remain in its current state. It can't be switched
between floating and docked modes.

- ATC_FLOATCOMPRESSED. When the toolbar is floating, separators ("dead" items) will
be temporarily removed. This will force all the buttons to press against each other
creating the familiar tool palette seen in many graphics applications.

- ATC_NO_CONFIG. This items in this particular toolbar cannot be changed in any way.
New items cannot be inserted; existing items cannot be removed.

Several useful combinations of the available styles have been combined into common
styles like ATC_SHOWTOOLPALETTE and ATC_SHOWDOCKED.

Sample Code

// Define the standard toolbar
UINT uiStandardIDArray[] = {ID_FILE_NEW, ID_FILE_OPEN, ID_FILE_SAVE,
 ID_ATC_SEPARATOR,
 ID_EDIT_CUT, ID_EDIT_COPY, ID_EDIT_PASTE,
 ID_ATC_SEPARATOR,
 ID_FILE_PRINT, ID_APP_ABOUT};

// Append the "standard" toolbar to the end of the created dock
hWndToolbar = ATC_AppendToolbar ("Standard", ATC_SHOWDOCKED,
 0, 0, 0, 0,
 hWndDock, uiStandardIDArray,
 sizeof (uiStandardIDArray) / sizeof (UINT)))

// Append a no-config "palette" toolbar to the end of the created dock
hWndToolbar = ATC_AppendToolbar ("Standard",
 ATC_SHOWTOOLPALETTE | ATC_NO_CONFIG,
 0, 0, 0, 0,
 hWndDock, uiStandardIDArray,
 sizeof (uiStandardIDArray) / sizeof (UINT)))

// Mark a window as visible, hidden, floating, then docked
// Don't use Windows' ShowWindow!!!
ATC_ShowToolbar (hWndToolbar, ATC_SHOW);
ATC_ShowToolbar (hWndToolbar, ATC_HIDE);
ATC_ShowToolbar (hWndToolbar, ATC_SHOWFLOATING);
ATC_ShowToolbar (hWndToolbar, ATC_SHOWDOCKED);

// Is toolbar visible? (don't use Windows' IsWindowVisible!)
if (ATC_IsVisible (hWndToolbar))

// Is toolbar floating?
if (ATC_IsFloating (hWndToolbar)) ...

Button Styles
There are three button styles that can be used by the programmer:

1. Normal. A button is pressed down by the user and it is returned to the up position
automatically by ATC. This is the default button style.

2. Checkbox. A button is pressed down by the user and it automatically changes
between checked and unchecked states without returning to an up state.

3. Stay-pressed. A button is pressed down by the user and it remains down until the
application releases it with an API call. This can be used as feedback for the user to
indicate that the program is still working on the requested command.

Sample Code

// Make the bold button a checkbox
ATC_SetButtonStyle (pATCSystem, ID_STYLE_BOLD, ATC_BTN_CHECKBOX);

// Make the about button a stay-pressed button
ATC_SetButtonStyle (pATCSystem, ID_APP_ABOUT, ATC_BTN_STAYPRESSED);

Button States
ATC provides several functions to modify the state of a particular button. Buttons can be
enabled or disabled and unchecked, checked, or indeterminate. Buttons can also be
enabled or disabled and pressed or released.

Sample Code

// Make the underline button unchecked
ATC_CheckButton (pATCSystem, ID_STYLE_BOLD, FALSE);

// Make the italic button checked
ATC_CheckButton (pATCSystem, ID_STYLE_BOLD, TRUE);

// Make the bold button indeterminate
ATC_CheckButton (pATCSystem, ID_STYLE_BOLD, 2);

// The save button should be disabled
ATC_EnableButton (pATCSystem, ID_FILE_SAVE, FALSE);

// The stay-pressed compile button should now be released
ATC_PressButton (pATCSystem, ID_FILE_COMPILE, FALSE);

// Make the left radio button checked and turn off all others
ATC_CheckRadioButton (pATCSystem, ID_STYLE_LEFT, ID_STYLE_JUSTIFIED,
 ID_STYLE_LEFT);

// Is the bold button checked?
if (ATC_IsButtonChecked (pATCSystem, ID_STYLE_BOLD)) ...

// Is the bold button enabled?
if (ATC_IsButtonEnabled (pATCSystem, ID_STYLE_BOLD)) ...

// Is the bold button pressed?
if (ATC_IsButtonPressed (pATCSystem, ID_STYLE_BOLD)) ...

Toolbar Settings
The ATC system can be configured with the following options:

- An individual toolbar can be configured as floating or docked only (no switching).
- An individual toolbar can be configured to temporarily remove all item separators

when the window is floating to create a palette window.
- An individual toolbar can be configured to be non-configurable by the user so items

cannot be moved or inserted.

Sample Code

// This toolbar can no longer between switched between
// floating and docked forms.
dwStyle = ATC_GetToolbarStyle (hWndToolbar);
ATC_SetToolbarStyle (hWndToolbar, dwStyle | ATC_NO_SWITCH);

// When this toolbar is floating, separators are temporarily
// removed to compress the toolbar into a traditional "palette"
// seen in graphics applications.
dwStyle = ATC_GetToolbarStyle (hWndToolbar);
ATC_SetToolbarStyle (hWndToolbar, dwStyle | ATC_FLOATCOMPRESSED);

// This toolbar can no longer be configured by the user
dwStyle = ATC_GetToolbarStyle (hWndToolbar);
ATC_SetToolbarStyle (hWndToolbar, dwStyle | ATC_NO_CONFIG);

Status Bar Messages
An expected feature in Windows applications is descriptive help text in the status bar when
a menu item or toolbar item is selected. To notify the application that a button is being
pressed or released, ATC provides a function to define certain messages.
Two messages are required:

1. Button Select - to indicate that a button is currently being selected.
2. Button Cancel - to indicate that a button is no longer selected but was not actually

chosen. This is accomplished by releasing the mouse button while the pointer is not
over the toolbar item.

Note that these messages following the wParam/lParam format of WM_MENUSELECT. So,
you can request that ATC simply use WM_MENUSELECT to indicate button presses.
If an item is selected and then released the application window will receive a
WM_COMMAND message with the command ID in the word parameter.
For compatibility with MFC-based application (and the built-in CStatusBar support) you
should use ATC_DefineMessages to mimic the WM_MENUSELECT messages.

Sample Code

// Messages from ATC to this app to update status bar text
#define WM_ATM_BUTTONSELECT WM_USER + 1 // Button selection
#define WM_ATM_BUTTONCANCEL WM_USER + 2 // Button cancellation

// We want to get status bar update messages
ATC_DefineMessages (WM_ATM_BUTTONSELECT, WM_ATM_BUTTONCANCEL);

// We want to get status bar update messages via WM_MENUSELECT
ATC_DefineMessages (WM_MENUSELECT, WM_MENUSELECT);

Application Sizing
When the dock window is resized, the ATC library sends a WM_SIZE message to the parent
application window. The method for calculating the size taken up by the dock window is
easily obtained using a single function. See the following sample code for more information.
If you are using ATC with an MFC-based application then the wrapper class demonstrated in
the MFC example code handles resizing automatically.

Sample Code

// Get the top dock window and figure out its size
hWndDock = ATC_GetDockWindow (pATCSystem, ATC_DOCK_TOP);
if (hWndDock && IsWindowVisible (hWndDock))
{

RECTsRectDock;

// Use GetWindowRect (instead of GetClientRect) so we get
// the borders of the dock window - the true height
GetWindowRect (hWndDock, &sRectDock);
iDockHeight = sRectDock.bottom - sRectDock.top;

}

Layout Saving
ATC supplies functions which can be used to convert the complete dock, toolbar, and
button layout to an series of text strings. These strings can be easily converted into INI file
entries for saving.
The sample code below demonstrates a SaveLayout function which will neatly store these
layout strings into the application's INI file under a given INI section.
Note that saving the strings to an INI file is only a suggestion. The application may choose
to store these strings in a binary format within a user-configuration file. ATC is simply
providing a convient method for retrieving and restoring the layout information using a
series of strings.

Sample Code

void
SaveLayout(
 ATCSYSTEM pATCSystem, // The ATC system
 LPSTR szINISection) // The INI file section
{
 char rcINIFile[255]; // The INI file
 UINT uiNumStrings; // # of strings in an array
 UINT uiCount; // Counter variable

 // The INI file name is the app name with an INI extension
 GetModuleFileName (ghInstance, rcINIFile, sizeof (rcINIFile) - 1);
 lstrcpy (rcINIFile + lstrlen (rcINIFile) - 3, "INI");

 // Get all the toolbar layout strings from ATC
 if (!ATC_CreateLayoutStrings (pATCSystem, &uiNumStrings))
 return;

 // Erase all existing layout entries in the INI file
 WritePrivateProfileString (szINISection, NULL, NULL, rcINIFile);

 // Write the strings to the private INI file
 for (uiCount = 0; uiCount < uiNumStrings; uiCount ++)
 {
 char rcHeading[255]; // Heading string
 char rcLayout[255]; // Layout string

 // Get the layout strings and write them to the INI file
 ATC_GetLayoutString (uiCount, rcHeading, rcLayout);
 WritePrivateProfileString (szINISection, rcHeading,
 rcLayout, rcINIFile);
 }

 // Free the layout strings
 ATC_FreeLayoutStrings ();
}

Layout Restoration
A toolbar layout can be neatly restored using the layout strings created using the layout
saving routines as demonstrated in the previous section. The sample code below
demonstrates a RestoreLayout function which takes the layout strings stored in the
application's INI file under the given INI section and converts them to the format needed by
ATC.
This function returns TRUE if all is successful. If a problem occurs or there are no layout
strings in the INI file then it will return FALSE and the application should simply create the
default toolbars manually.

Sample Code

BOOL // TRUE if restored; otherwise FALSE
RestoreLayout(
 ATCSYSTEM pATCSystem, // The ATC system
 HWND hWnd, // The parent window
 LPSTR szINISection) // The INI file section
{
 char rcINIFile[255]; // The INI file
 char rcHeadings[255]; // All the headings
 BOOL fRestore; // TRUE if it was restored
 char *szHeading; // The current heading

 // The INI file name is the app name with an INI extension
 GetModuleFileName (ghInstance, rcINIFile, sizeof (rcINIFile) - 1);
 lstrcpy (rcINIFile + lstrlen (rcINIFile) - 3, "INI");

 // Get all the headings in the INI file under the layout section
 // Just return with FALSE if no layout saved
 if (!GetPrivateProfileString (szINISection, NULL, "",
 rcHeadings, 255, rcINIFile))
 return (FALSE);

 // Point to the top of the headings list
 // This list of headings is \0 separated with a \0\0 at the end
 szHeading = rcHeadings;

 // Init the layout string arrays
 ATC_InitRestoreLayout ();

 // Get all the layout strings from the INI file
 while (szHeading[0] != '\0')
 {
 char rcLayout[255]; // Heading layout string

 // Using the current heading, get it's information
 if (GetPrivateProfileString (szINISection, szHeading, "",
 rcLayout, 255, rcINIFile))
 if (!ATC_AddLayoutString (szHeading, rcLayout))
 return (FALSE);

 // Skip down to the next heading
 szHeading += lstrlen (szHeading) + 1;
 }

 // Do the restoration then free the layout strings
 fRestore = ATC_RestoreLayout (pATCSystem, hWnd);
 ATC_FreeLayoutStrings ();
 return (fRestore);
}

"Toolbars" Menu
Adding a "Toolbars" menu to your application allows users to show or hide toolbars through
a keyboard interface. It also serves another important purpose: it is actually possible for
the user to hide all the toolbars and have no way to get them back! This can happen if the
user hides all the toolbars using the ATC-supported popup toolbar menu. The user can no
longer click on a dock or toolbar to access the popup toolbar menu! Therefore, a "Toolbars"
menu is extremely important.

The easiest way is shown in the sample applications and is demonstrated in the example
code below. Use CreatePopupMenu and AppendMenu to add a "Toolbars" popup menu to
your application window's menu structure. On the WM_INITMENUPOPUP message for that
window update the "Toolbars" menu using the UpdateToolbarsMenu function shown below.
Then on a WM_COMMAND message for one of the items in that menu use ATC to find and
show the selected toolbar window.

Sample Code

void
UpdateToolbarsMenu(
 ATCSYSTEM pATCSystem, // The ATC system
 HMENU hMenu) // The "Toolbar" submenu
{
 UINT uiNumToolbars; // # toolbars in system list
 UINT uiIndex; // Index into toolbar list

 // Remove items if any items exist
 uiNumToolbars = GetMenuItemCount (hMenu);
 for (uiIndex = 0; uiIndex < uiNumToolbars; uiIndex ++)
 DeleteMenu (hMenu, 0, MF_BYPOSITION);

 // Get the toolbar count, if zero then return
 if ((uiNumToolbars = ATC_GetToolbarCount (pATCSystem)) == 0)
 return;

 // Loop through the toolbar list
 for (uiIndex = 0; uiIndex < uiNumToolbars; uiIndex ++)
 {
 HWND hWnd; // The toolbar window

 // Get the toolbar window
 if ((hWnd = ATC_GetToolbarViaIndex (pATCSystem, uiIndex))
 != NULL)
 {
 char rcTitle[255]; // Title of the window
 BOOL fVisible; // TRUE if window is visible

 // Get the title and visibility of the window
 ATC_GetToolbarTitle (hWnd, rcTitle, sizeof (rcTitle) - 1);
 fVisible = ATC_IsVisible (hWnd);

 // Append the toolbar to the menu
 AppendMenu (hMenu, MF_ENABLED | (fVisible ? MF_CHECKED : MF_UNCHECKED),
 ID_TBARSTART + uiIndex, rcTitle);
 }
 }
}

MFC Support
The example MFC application included with the ATC installation demonstrates the use of
ATC and MFC within the same program. Please follow the following instructions with those
source files.
Changes primarily involve the MAINFRM.CPP and MAINFRM.H files. You will also have to include
two new files which serve as an MFC wrapper around ATC.
Here are the important points to keep in mind:

1. Include the ATCWRAPR.CPP and ATCWRAPR.H files into your project. These files define a very
simple class called CATCWrapper and can be found in the MFCDEMO directory. This
class wraps around the dock window generated by ATC.

2. Remove all references to the MFC CCToolBar control in MAINFRM.CPP and MAINFRM.H.
3. Add references to the CMainFrame class (in MAINFRM.H) for the public CreateToolbar

function and the protected m_wndATCWrapper variable.
4. #include "atcwrapr.h" in your MAINFRM.CPP file.
5. Initialize ATC in the CMainFrame::OnCreate handler, also call CreateToolbar to create

the actually ATC dock and toolbar. If you use ATC_DefineMessages to mimic
WM_MENUSELECT then ATC will work with the MFC status bar.

6. You will have to supply a ATCLoadStringProc function to grab description strings.
7. Follow the sample CreateToolbar function to see exactly what is necessary to install

an ATC toolbar. Note that the technique is exactly the same as what's necessary for a
non-MFC application with one exception. Use the m_wndATCWrapper.CreateDock
member function instead of ATC_CreateDock.

8. Add the ATC16.LIB library file to the link options for your project. Remember that the
ATC16.DLL must be in the same directory as your application during run-time.

At some point you will probably want to define quick help text. This will involve changes to
your RC file. See the MFCDEMO and ATCDEMO files for examples.

Object-Oriented Design
The ATC library was carefully designed and implemented so future upgrades and features
would be easy to add. While the source code is written in C for compatibility with SDK
applications, object-oriented techniques were used throughout the code to insure
maximum portability and data abstraction.
The code that manipulates the internal toolbar data is "black-boxed" within several code
modules. Access to data structure variables is only permitted through API calls. These data
structures can be extensively modified without affecting external code modules.
The toolbar handles items - not buttons. Currently there are button items and dead items
(used for separators). In the future other items such as those defined by a window class
(such as combobox or a user-defined clock window class) can be included on a toolbar.
All routines which deal directly with the Windows API are in separate independent modules.
This leads to the possibility of porting to other operating environments or taking advantage
of new Windows API calls in the future.
All routines which deal directly with memory are in a separate module. If the application
currently uses a private memory management scheme, the ATC library can use it as well.

Robust Source
The code for the ATC library was compiled using Microsoft Visual C++ Version 1.5 at the
highest warning level (-W4). Warnings for the use of // for comments and unused formal
parameters are the only two warning types that were ignored. The STRICT definition was
also used to guarantee correct Windows API function calls.
The code also compiles cleanly under Borland C++ 4.0. The same warnings accepted from
the Microsoft compiler were accepted from Borland.
Nu-Mega's Bounds Checker 2.0 for Windows was used for extensive testing of the ATC
library. No memory leaks or illegal Windows calls were reported.
The library has also been tested under the debugging version of Windows 3.1 and executes
cleanly.
The 16-bit library itself is compiled using the large memory model. However, the DLL works
perfectly with mixed-model applications (small, medium, or large memory models).
As stated earlier, the ATC library was completely written in the C programming language.
This allows maximum source code compatibility with C or C++ applications. The header file
used by the application to access the DLL, ATC.H, has been delimited with the extern "c"
instruction to work with C++ source code.
The 16-bit and 32-bit ATC libraries are based on the same source code. The migration of the
ATC source code to the Win32 forced even cleaner code. Special care was taken to insure
source code compatibility between 16-bit and 32-bit environments.

With over 15,000 lines of heavily documented code, the source also provides excellent
examples of the following high-level Windows operations:

- Manually drawing graphical buttons (not simply ownerdraw buttons)
- Popup menus for the right mouse button
- Converting child windows into popup windows at run-time
- Manually drawing mini title bars
- Subclassing a listbox to support drag and drop
- Ownerdraw, variable-height graphical listboxes
- Timers
- Constructing modules which compile for 16- and 32-bit Windows libraries

Ordering Information
The Advanced Toolbar Control is available now!

ATC is priced based on the licensing and source code options listed below:
1. 16-Bit Libraries for $195
2. 16/32-Bit Libraries for $295
3. 16/32-Bit Libraries and Source Code for $495

There are no royalties to pay after purchasing the ATC libraries. The libraries are to be used
on a per-product basis; to develop additional software products additional licenses must be
purchased. For more information read the licensing agreement included with this help file.

To make update announcements easier please provide us with an email address and a list
of on-line services you frequent.

To order, please send a check made out to Alien Technologies to the following address. Or
call us with your Mastercard or Visa number. North Carolina residents are required to add
6% to the package price for sales tax. Shipping and handling charges are $5 for 3-day
arrival and $10 for next-day air within the continental United States. For other destinations
please contact us at the phone number listed below.

Alien Technologies
3330 Walnut Creek Parkway Suite N
Raleigh, NC    27606-3840
(919) 851-9622

Internet: aliensales@aol.com
America Online: AlienSales
CompuServe: 74367,3261

16-Bit Libraries
This package consists of the files necessary to integrate ATC into Windows 3.1 applications.
Sample code is provided which demonstrate how to use ATC with C/SDK applications and
with C++/MFC applications. Project files are supplied for use with Microsoft or Borland
compilers.
The complete API reference is supplied within an extensive Windows help file. Functions are
hypertext-linked to example code.

16/32-Bit Libraries
This package consists of the files necessary to integrate ATC into Windows 3.1 and Windows
NT applications. Sample code is provided which demonstrate how to use ATC with C/SDK
applications and with C++/MFC applications. Project files are supplied for use with Microsoft
or Borland compilers.
The complete API reference is supplied within an extensive Windows help file. Functions are
hypertext-linked to example code.

16/32-Bit Libraries and Source Code
This package consists of the files necessary to integrate ATC into Windows 3.1 and Windows
NT applications. Sample code is provided which demonstrate how to use ATC with C/SDK
applications and with C++/MFC applications. Project files are supplied for use with Microsoft
or Borland compilers.
The complete API reference is supplied within an extensive Windows help file. Functions are
hypertext-linked to example code.
In addition, the complete source code to the ATC libraries are provided. This code can be
compiled using Microsoft or Borland compilers in 16- or 32-bit environments.
The licensing agreement allows you to modify the source code and create new,
personalized versions of ATC that you can distribute, in object code form, with your
application.
You are not permitted to use the source code to create a product with would directly
compete with the ATC toolbar control product.

Licensing Agreement
ADVANCED TOOLBAR CONTROL
This is a legal agreement between you (either an individual or an entity) and Alien Technologies. By installing the
computer software in this package ("SOFTWARE"), by loading or running the software, or by placing or copying the
files contained on this disk you are agreeing to be bound by the terms of this Agreement. If you do not agree to
the terms of this Agreement, promptly return the SOFTWARE and the accompanying items (including all written
materials), along with your receipt to the place from where you obtained them for a full refund.

ALIEN TECHNOLOGIES LICENSE AGREEMENT
1. GRANT OF LICENSE. Alien Technologies grants to you the non-exclusive rights to use the enclosed software and
electronic text files comprising the documentation (the "SOFTWARE") in the following manner. You may use the
SOFTWARE for the development of one software product; additional licenses can be purchased from Alien
Technologies to develop additional software products. You may make an unlimited number of copies of any
material copied from the SOFTWARE or from other written materials accompanying the SOFTWARE, provided that
such copies shall be used only for internal purposes and are not to be republished or distributed (either in
hardcopy or electronic form) beyond your premises, except as otherwise provided herein.
2. COPYRIGHT. The SOFTWARE is owned by Alien Technologies or its suppliers and is protected by United States
copyright laws and international treaty provisions. You may not otherwise reproduce, copy, disclose to others, or
distribute, in whole or in any part, the SOFTWARE except as otherwise provided herein.
3. OTHER RESTRICTIONS. You may not rent or lease the SOFTWARE. You may make a permanent transfer of the
SOFTWARE by providing Alien Technologies written notice of your name, company, and address and the name,
company, and address or the person to whom you are transferring the rights granted within. In the event of a
transfer, you may not retain any copies of the SOFTWARE and accompanying written materials, and the recipient
must agree to the terms of this Agreement. You may not reverse engineer, decompile, or disassemble the
SOFTWARE. If the SOFTWARE is an update or has been updated, any transfer of the license to use the SOFTWARE
must include the most recent update and all prior versions.
4. SAMPLE CODE. In addition to the rights granted in Section 1, Alien Technologies grants you a non-exclusive,
royalty-free right to use and modify the source code located within the "samples" directory (Sample Code) for the
sole purposes of designing, developing, and testing your software product, and to reproduce and distribute the
Sample Code along with any modifications thereof, only in object code form provided that you comply with Section
7.
5. SOURCE CODE. In addition to the rights granted in Section 1, if you have purchased the Source Code to this
product, Alien Technologies grants you a non-exclusive, royalty-free right to use and modify the source code
located within the "source" directories (Source Code) for the sole purposes of designing, developing, and testing
your software product, and to reproduce and distribute the Source Code along with any modifications thereof, only
in object code form provided that you comply with Section 7.
6. REDISTRIBUTABLE COMPONENTS. In addition to the rights granted in Section 1, Alien Technologies grants you a
non-exclusive, royalty-free right to use the object code files located in the "redist" directory (Redistributable Code)
for the sole purposes of designing, developing, and testing your software product, and to reproduce and distribute
the Redistributable Code only in object code form provided that you comply with Section 7.
7. REDISTRUBUTABLE REQUIREMENTS. If you are authorized to redistribute the Sample Code and/or
Redistributable Code, (collectively "REDISTRIBUTABLE COMPONENTS") as described in Sections 4, 5 and 6 above,
you must: (a) distribute the REDISTRIBUTABLE COMPONENTS only in conjunction with and as a part of your
software application product; (b) not permit further redistribution of the REDISTRIBUTABLE COMPONENTS by your
end-user customers; (c) not use Alien Technologies' name, logo, or trademarks to market your software application
product; (d) include a valid copyright notice on your software application product; and (e) agree to indemnify, hold
harmless, and defend Alien Technologies from and against any claims or lawsuits, including attorney's fees, that
arise or result from the use or distribution of your software application product.

LIMITED WARRANTY
LIMITED WARRANTY. Except with respect to the SAMPLE CODE which is provided "as is," without warranty of any
kind, Alien Technologies warrants that (a) the SOFTWARE will perform substantially in accordance with the
accompanying written or on-line documentation for a period of ninety (90) days from the date of receipt. Any
implied warranties on the SOFTWARE is limited to ninety (90) days. Some states/jurisdictions do not allow
limitations on duration of an implied warranty, so the above limitation may not apply to you.
CUSTOMER REMEDIES. Alien Technologies' and its suppliers' entire liability and your exclusive remedy shall be, at
Alien Technologies' option, either (a) return of the price paid, or (b) repair or replacement of the SOFTWARE that
does not meet Alien Technologies' Limited Warranty and which is returned to Alien Technologies with a copy of
your receipt. The Limited Warranty is void if value of the SOFTWARE resulted from accident, abuse, or
misapplication. Any replacement SOFTWARE will be warranted for the remainder of the original warranty period or
thirty (30) days, whichever is longer.
NO OTHER WARRANTIES. To the maximum extent permitted by law, Alien Technologies disclaims all warranties,
either express or implied, including but not limited to implied warranties of merchantability and fitness for a
particular purpose and any warranty against infringement, with regard to the SOFTWARE and any accompanying
written materials. This limited warranty gives you specific legal rights. You may have others which vary from
state/jurisdiction to state/jurisdiction.
NO LIABILITY FOR CONSEQUENTIAL DAMAGES. To the maximum extent permitted by the applicable law, in no
event shall Alien Technologies or its suppliers be liable for any damages whatsoever (including, without limitation,
damages for loss of business profits, business interruption, loss of business information, or other pecuniary loss)
arising out of the use of or inability to use the SOFTWARE, even if Alien Technologies has been advised of the
possibility of such damages. Because some states/jurisdictions do not allow the exclusion or limitation of liability
for consequential or incidental damages, the above limitation may not apply to you.

U.S. GOVERNMENT RESTRICTED RIGHTS
The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer
Software - Restricted Rights 48 CFR 52.227-19, as applicable. Manufacturer is Alien Technologies, 2522 Clark
Avenue, Raleigh NC 27607.
If you acquired this product in the United States, this Agreement is governed by the laws of the State of North
Carolina. If you acquired this product outside the United States, local law may apply

© 1994 Alien Technologies. All rights reserved.

About Alien Technologies
Who (or what) is Alien Technologies?

Alien Technologies was founded to provide developer and application components for the
Microsoft Windows community. By components we mean independent modules that extend
the capabilities of commercial applications. Components might be installed at run-time by
the end-user or at compile-time by the application developer. We are very interested in
your comments about this product or ideas for future products.

Please feel free to contact us with questions, comments, or orders at the following address.

Alien Technologies
3330 Walnut Creek Parkway Suite N
Raleigh, NC    27606-3840
(919) 851-9622

Internet: aliensales@aol.com
America Online: AlienSales
CompuServe: 74367,3261

